Methylmalonyl-Coenzyme A Mutase Activity in Vitamin B$_{12}$ Deficiency

Jean Mayer USDA Human Nutrition Research Center on Aging
Vitamin Metabolism Lab
Tawny Wilson
May 29, 2009
Presentation Overview

- Introduction to Methylmalonyl-CoA Mutase
- Low Activity Implications
- Ways to Measure Mutase Activity
 - Radiometric- Common Method
 - Non-radioactive
- Experimental Overview
 - HPLC
 - Mutase Activity in B_{12} Deficient and Replete Samples
 - Results
- Conclusions
Cobalamin- Dependant Pathways

HoloTC

Adenosyl B_{12}

Methyl B_{12}

MMA

Mitochondrion

L-Methylmalonyl-CoA

B_{12}

MCM

Succinyl-CoA

Purines, DNA, RNA

THF

5'-Methyl THF

dTMP+DNA

SHMT

MTHFR

5'-Methyl THF

MS

B$_{12}$

Methionine

SAM

R

Methylation

RCH

Homocysteine

Homocysteine
Methylmalonyl-Coenzyme A Mutase

- Mitochondrial
- Requires B$_{12}$ Derivative: 5’-adenosylcobalamin (AdoCbl)
Impaired Mutase Activity

- Methylmalonic acidemia: mild-fatal
- Causes:
 - Cobalamin deficiency
 - Defect in genes involved in synthesis of AdoCbl from hydroxocobalamin (cbl mutations)
 - Defect in structural gene for mutase apoenzyme
- Symptoms: ketoacidosis, vomiting, lethargy

\[
\text{Methylmalonyl-CoA} \leftrightarrow \text{Succinyl-CoA}
\]
Uses of Mutase Activity Measures

- In vitro measurements of total and holo enzyme activity (w/ and w/o added AdoCbl)
 - Investigate Cbl pathway
 - Identify *mut* and *cbl* mutations
- Clinical Uses
 - Diagnose Methylmalonic Acidemia
 - When B_{12}-Test levels are Low to Normal or hematologic indexes are normal
 - Nutritional status indicator- B_{12} Deficiency
Activity Measurement Methods

- 1 unit of activity = $1 \mu\text{mol Succinyl-CoA/ minute}$

- Radiometric: DL $[\text{CH}_3^{14}\text{C}]$methylmalonyl-CoA produces $[^{14}\text{C}]$succinyl- CoA which is separated and quantified using:
 - Paper chromatography
 - TLC
 - Electrophoresis
 - Potassium permanganate oxidation*
 - Extraction into ethyl acetate
 - Gas chromatography
 - HPLC
Activity Measurement Methods

- Nonradioactive- separate Methylmalonyl-CoA and Succinyl-CoA
 - Reverse-phase HPLC

http://www.galantamine.cn/images/hp-hplc.jpg
High Performance Liquid Chromatography

- Separate, Identify, and Quantify Compounds

- **Column** - Stationary phase, silica binds covalently (BETASIL Phenyl Column)

- **Pump** - Mobile phase (MeOH)

- **UV Detector** - 259nm, Retention times (Varies on Stationary phase, molecules, and solvent)

- **Reverse Phase Chromatography** - Non-polar stationary phase and aqueous, moderately polar mobile phase

http://www.lcresources.com/resources/getstart/2g01.htm
Example Chromatogram
Experimental Assay

- **Hypothesis:**
 - Mutase activity in liver will be reduced in rats with B$_{12}$ deficient diets as compared to normal B$_{12}$ diets.

- **Experimental Design:**
 - 5 B$_{12}$ Deficient Rats
 - 4 B$_{12}$ Sufficient Rats
HPLC Method

- Samples- Homogenized rat liver, centrifuged and collect supernatant
- Added 1mM AdoCbl (Total) or Water (Holo)
- Preincubation (5 min)
- Added 600µM Methylmalonyl CoA
- Long incubation (30 min)
- 10% TCA added to stop reaction
- Centrifuged samples
- Ran HPLC with 75mM Acetic Acid, 100mM KPhos, in 15% MeOH Buffer
Results

Succinyl CoA (nmol/mg) Levels in B12 Deficiency and Sufficiency

Animal No: #70-74 B12 Deficient
#128-131 Normal B12
Results

Mean Succinyl CoA Levels (nmol/mg) in B12 Deficiency and Sufficiency

- Holo Enzyme (w/o added AdoCbl)
- Total Enzyme (w/ added AdoCbl)
Conclusion

- HPLC Method Successful
 - Identify and quantify synthesized Succinyl-CoA
 - Change in holo and total enzyme activity
- No difference in mutase activity between deficient and replete samples
 - Repeat experiment with fresh samples
Acknowledgements

- Vitamin Metabolism Laboratory
 - Jacob Selhub, Ph.D
 - Ligi Paul, Ph.D
 - Gaofeng Bi, B.S.
 - Lydia Barrett, M.S.
 - Meghan Faherty, B.S.
 - Rosaline Bowen, M.A.

- Tufts Faculty
 - Martin Obin, Ph.D
 - Lynne Ausman, D.Sc., R.D.
Resources

Questions?