Child pages
  • Function Representations
Skip to end of metadata
Go to start of metadata

Function Representations

Third Grade Lessons
  1. Candy Boxes - This class centers on the possible amounts of candies two children, John and Maria, have. They each have the same, unspecified number of candies inside their own candy box. John has, in addition, one extra candy and Maria has three extra candies. What are the possible total candies they might have?
  2. Functions II - The students will use three functions that are represented as a sequence of patterns and create a sequence of hops on the number line, a data table, and an algebraic expression to express the functions.
  3. How Many Points? - Students work with: (a) a context — distance as a function of time; (b) generating coordinates.
  4. Linear vs Quadratic Functions - The students will use two functions (a linear and a quadratic) that are represented as a sequence of patterns and create a sequence of hops on the number line and an algebraic expression to express the functions.
  5. N-Number Line II - Students use the N-Number line to make generalizations about an unknown amount of money in a piggy bank.
  6. Piggy Banks - The whole lesson revolves around a multipart story problem involving changes in two quantities over several days of a week. The initial quantities are equal yet unknown. Then transformations are applied to the quantities. Students are asked to compare the quantities throughout the week even though only their relative relationship can be determined.
  7. Three Heights - In this class we will explore: (a) How the children deal with comparisons, (b) How they draw inferences from comparisons, and (c) How they represent comparisons between three unknown amounts.
Fourth Grade Lessons
  1. Cartesian Candy Bars II - Children work on sharing different amounts of candy bars among different numbers of people. They compare ratios (candy bars per person) and plot points in a Cartesian grid.
  2. Comparing Strips of Unmeasured Lengths I - The class is the first of a series that will focus directly upon the algebraic representation of measurements and their multiplicative relations. Children are asked to compare the lengths of strips, to describe the relationships between them in multiple ways, and to demonstrate that the relationships they represent are true.
  3. Comparing Strips of Unmeasured Lengths II - The class is the second of the "Strips of Unmeasured Lengths" series that will focus directly upon the algebraic representation of measurements and their multiplicative relations. Children are asked to compare the lengths of strips, to use algebraic notation to describe the relationships between them, and to demonstrate that the relationships they represent are true.
  4. Comparing Strips of Unmeasured Lengths III - This is the third lesson in the "Strips of Unmeasured Lengths" series that focuses directly upon the algebraic representation of measurements and their multiplicative relations. We will work with the relationship B = 3S, focusing on equations and their verbal descriptions and on true and false equations and statements.
  5. Multiplicative Candy Boxes I - This class centers on the possible amounts of candies two children, Juan and Marcia, have. Juan has a box of candy and Marcia has twice as much candy. What are the possible amounts of candies they might have?
  6. Three Heights Review - In this class we will explore: (a) How children deal with comparisons, (b) How they draw inferences from comparisons, and (c) How they represent comparisons between three unknown amounts.
  7. Wallet Problem I - Students compare the amounts of money two students have. The amounts are described relationally but not through precise dollar amounts.
  8. Wallet Problem II - Students will be given a wallet problem. They will be asked to compare the amounts of money two students have. The amounts are described relationally but not through precise dollar amounts.
Fifth Grade Lessons
  1. Arcade - Students are told a story about two children, each of whom has a certain amount of money, but only one of whom has an amount known to us. After a series of events they happen to end up with the same amount of money.
  2. Basic Function Shapes - In this lesson, the students will (a) discuss, represent, and solve a verbal problem involving the choice between two functions; (b) choose, among 8 basic graphs (7 distinct shapes), the one that matches specific situations; and (c) write stories to match a specific graph shape.
  3. Elapsed Time - A variant of the train crash problem is used to address questions about elapsed time. The task is to determine where a train is, given a certain time.
  4. Enacting and Solving Equations - Students enact and discuss a situation where two children have amounts of candies. Some of the candies are visible, others are inside opaque tubes or boxes. After considering multiple possibilities they are told that the children have the same amount of candies. The situation corresponds to the equation 3x + y + 6 = x + y + 20, where x is the amount of candies per tube and y is the amount of candies per box. Students will be asked to discuss and to represent the situation, to solve the equation that corresponds to the situation, and to solve other written equations with similar structure.
  5. Equations and Graphs - Students will further compare two linear functions in the context of evaluating two plans for shoveling snow. One plan has two parts: a basic charge plus a charge based on the number of square meters cleared. The other plan has no basic charge; it only charges according to the number of square meters cleared. However the per-meter charge is higher than in the other plan. Students are asked to determine the circumstances in which the bill from each plan would be the same. They then examine the graph of the two functions and discuss how equations and inequalities relate to the graph.
  6. Fifth Grade Assessment I Review - This lesson will focus on reviewing the recent in-class assessment, on writing equations for word problems, and on solving equations.
  7. Fifth Grade Assessment III - This assessment will focus on writing equations to solve verbal problems and on solving equations using the syntactic rules of algebra.
  8. Phone Plans - Students will compare two linear functions in the context of evaluating phone plans. One plan has two parts: a basic charge plus a charge based upon the number of minutes used. The other plan has no basic charge; it only charges according to the minutes used. However the per-minute charge is higher than in the other plan. Students are asked to determine the circumstances in which the monthly bill from each plan would be the same. They then examine the graph of the two functions and discuss how equations and inequalities relate to the graph.
  9. Solving Equations with One Variable - Students work on a story about two children who each have a certain amount of money. The amount of one of the children is known but the other is not. After a sequence of transformations they end with the same amount of money. Students will be led to solve for the starting value by relating the equation to the events in the story. After that, they will be asked to solve another similar problem.
  10. Train Crash - Students will compare two linear functions represented in a graph. They reason about the problem using (a) the word problem and two diagrams; (b) a graph of position vs. time; (c) a table of values (d) making expressions for each position function; and (e) solving the equation algebraically.
  11. Varying Rates of Change - Students will compare three functions, two of which are nonlinear, that tell the story of three cousins who all save $1,000 in one year. One saves a lot the first day and less and less each day as time goes on; one saves very little the first day and more and more each day throughout the year; the last cousin saves the same amount each day. Students will be asked to predict the shape of the graph for each function and, later, to look at and describe graphs of all three cousins' savings.
  12. Wallet Review Problem - This activity is a review of the Wallet Problem done in fourth grade. It is intended to introduce new students to some of the concepts we have covered and to refresh the memories of our old students. Students compare the amounts of money two students have. The amounts are described relationally but not through specific dollar amounts.
Middle School Lessons
  1. Candy Experiment - Students will create their own data to construct a graph and equation of negative and fractional slope.
  2. It Depends - Students will think about how we can show a dependent relationship between two quantities, using a variety of representations.
  3. Jason's Tree House - Students will extract data from a story and use tables and graphs to answers questions about proposed scenarios.
  4. Who Shares My Function? - Linear with All Representations - Students will work in groups after finding other students who have the same linear function represented by a story, a table, a graph, or an equation. They will attempt to explain and discuss why the different representations refer to the same function.
  5. Who Shares My Function? - Linear with Graphs and Stories - Students will make groups by finding other students who have the same quadratic or linear function in different representations.
  6. Who Shares My Function? - Linear with Graphs, Tables, and Equations - Students will make groups by finding other students who have the same linear function, as shown in representations of graphs, tables, or equations. They will then generate a story to go with the function.
  7. Who Shares My Function? - Linear with Negative and Fractional Slope - Students will find other functions that are the same as theirs, starting from a table, a graph, or an equation. Once they have identified the same function represented in a different way, they will create a story that describes all of the different representations of the same function.
  8. Who Shares My Function? - Quadratics - Students will make groups by finding other students who have the same quadratic or linear function in different representations.
  • No labels